Black Friday Sale! 50% Off All Access

Como la adopción de MLOps en tus procesos puede hacer crecer tu empresa de una manera más rápida Cada vez son más las empresas que invirtien en modelos de aprendizaje automáticos e inteligencia artificial para ahorrar tiempo y recursos. ¿Cómo implementarlos? Aquí hay una posible opción.

Las opiniones expresadas por los colaboradores de Entrepreneur son personales

desmon jiag | Getty Images

No es un secreto que las empresas de hoy están invirtiendo fuertemente en modelos de aprendizaje automáticos e inteligencia artificial con el objetivo de ahorrar tiempo y recursos. Dichos modelos, aparte de reducir gastos generales y automatizar procesos también permiten al equipo de data science enfocarse en tareas mucho más creativas y menos operativas. Adicionalmente, conocer los secretos para automatizar los ciclos de vida del aprendizaje automático brinda a las empresas la capacidad de recopilar datos de manera más eficiente y tomar decisiones mucho más informadas.

Existen herramientas que permiten establecer estas estructuras dentro de una empresa y una de ellas es MLOps (Operaciones de aprendizaje automático), que se define como el uso de modelos de aprendizaje automático por parte de los equipos de desarrollo/operaciones (DevOps). Es un proceso multifuncional, colaborativo que pone en marcha las capacidades de data science. Para ello, las MLOps tratan el machine learning (ML) y otros tipos de modelos como artefactos de software reutilizables. Luego, los modelos se pueden implementar y monitorear continuamente mediante un proceso repetible.

MLOps tiene muchos beneficios para los procesos de data science y, sin embargo, demasiadas organizaciones no saben cómo implementarlo. Para esto existen compañias diseñadas a apoyar la implementación de estos procesos y ofrecer una solución rápida y eficaz. Este es el caso de Elemeno AI, una plataforma innovadora que ayuda a los especialistas en data science a construir una infraestructura de software altamente escalable.

Elemeno AI tiene la misión de ayudar a las empresas a aprovechar los beneficios de la inteligencia artificial al proporcionar una plataforma MLOps integrada que ofrece una experiencia de usuario intuitiva para los data scientists que crean modelos de aprendizaje automático, desde el desarrollo hasta la producción. A través de un proceso simplificado, esta solución permite a las empresas centrarse en su negocio al crear aplicaciones de nivel empresarial con modelos de IA personalizados desarrollados por sus equipos.

A través de su interfaz, fácil de usar, la plataforma SaaS ML-Ops se enfoca en eliminar las cargas de ingeniería tradicionales. Automatiza varios procesos para que los científicos de datos puedan concentrarse en tareas creativas en lugar de dedicar la mayor parte de su tiempo a la ingeniería. El centro de la plataforma es una tienda de funciones, que es el componente clave para facilitar el desarrollo, la implementación y la operación del modelo ML. Con esto, el objetivo final de Elemeno AI es simplificar el proceso de creación de aplicaciones de IA para empresas.

Para usar la plataforma, las empresas deben conectar sus fuentes de datos, como AWS Redshift o Google BigQuery. El siguiente paso es configurar canalizaciones de ingestión de funciones. Aquí, las empresas pueden ajustar las transformaciones de características y personalizarlas. La plataforma administra automáticamente el almacenamiento, lo que garantiza que solo las funciones más recientes estén disponibles en el momento de la inferencia, mientras mantiene los datos básicos de funciones en almacenamiento en frío para usarlos para entrenar o depurar un modelo en producción.

El paso final es el despliegue. A través de las soluciones sin código de Elemeno AI, las empresas pueden elegir entre marcos compatibles, incluidos Tensorflow, PyTorch, Scikit Learn, Keras, ONNX y Tensorflow Lite. Al vincular las funciones en los modelos implementados, la plataforma elimina la responsabilidad de los clientes del modelo de calcular o conservar una copia de las funciones necesarias. Por ejemplo, si se usara un modelo en una aplicación móvil, los desarrolladores solo necesitarían enviar un identificador de la entidad para la cual necesitan una predicción, y la plataforma encontraría las funciones más recientes y las aplicaría al modelo.

Emprendedores

10 grandes frases sobre el poder de las metas

Establecer metas es el primer paso para lograr algo significativo.

Noticias

Empresa china DeepSeek lanza modelo de IA para competir con OpenAI

La compañía presentó el modelo DeepSeek-R1, con capacidades avanzadas de razonamiento, respaldado por una inversión de $138 millones de dólares.

Noticias

Apple planea actualizar Siri con IA para tener conversaciones más naturales

La nueva Siri supuestamente será capaz de mantener diálogos fluidos.

Tecnología

El 80% de las personas utiliza la inteligencia artificial: ¿cómo influye la IA en sus vidas?

Aunque muchas personas no se den cuenta, la inteligencia artificial está presente en su día a día. Estos son algunos ejemplos de cómo la IA influye en la vida cotidiana.

Noticias

14 maneras fáciles de ganar dinero extra en casa

Un ingreso adicional se siente como ser rico si ya tienes un trabajo diario para cubrir las deudas.

Finanzas

7 formas rápidas de ganar dinero invirtiendo $ 1,000

Si eres astuto, puedes convertir mil dólares en aún más dinero. Así es cómo.