Get All Access for $5/mo

This AI Predicts Online Trolling Before It Happens It's being used to weed out fake reviews, but could also help predict and curb online harassment.

By S.C. Stuart

This story originally appeared on PCMag

Sander van der Werf/Shutterstock via PC Mag

How do you keep online trolls in check? Ban them? Require real names?

Dr. Srijan Kumar, a post-doctoral research fellow in computer science at Stanford University, is developing an AI that predicts online conflict. His research uses data science and machine learning to promote healthy online interactions and curb deception, misbehavior, and disinformation.

His work is currently deployed inside Indian e-commerce platform Flipkart, which uses it to spot fake reviewers. We spoke to Dr. Kumar ahead of a lecture on healthy online interactions at USC.

Dr. Kumar, how do you counteract online harassment using data science and machine learning? How does your system identify the trolls?
In my research, I build data science and machine learning methods to address online misbehavior, which transpires as false information and malicious users. My methods have a dual purpose: first, to characterize their behavior, and second, to detect them before they damage other users. I have been able to investigate a wide variety of online misbehavior, including fraudulent reviews, hoaxes, online trolling, and multiple account abuse, among others.

How are you teaching the AI to spot these patterns?
I develop statistical analysis, graph mining, embedding, and deep learning-based methods to characterize what normal behavior looks like, [and] use this to identify abnormal or malicious behavior. Oftentimes, we may also have known examples of malicious behavior, in which case I create supervised learning models where I use these examples as training data to identify similar malicious entities among the rest.

Your research is currently being used in Flipkart. What problem were they trying to solve and how are they measuring results?
The key problem that I helped address on Flipkart was of identifying fake reviews and fake reviewers on their platform. This is a pervasive problem in all platforms; recent surveys estimate as much as 15 percent of online reviews [are] fake. It is therefore crucial to identify and weed out fake reviews, as our decision as consumers is influenced by them.

What's the method called here?
My method, which is called REV2, uses the review graph of user-review-product to identify fraudsters [who] give high scoring ratings to low-quality products or low scoring ratings to high-quality products. REV2 [compares] our recommendations to previously identified cases of fake reviewers.

Is it possible for AI to keep an eye inside social networks and raise the alarm when bad behavior is about to arise? Is this purely pattern-based analysis with sentient data crunching or something entirely different?
It is possible to proactively predict when something may go wrong by learning from previous such cases. For instance, in my recent research, I showed that it is possible to accurately predict when one community in the Reddit online platform will attack/harass/troll another. This phenomenon is called "brigading," and I showed that brigades reduce the future engagement in the attacked community. This is detrimental to the users and their interactions, which calls for methods to avoid them. Thus, I created a deep learning-based model that uses the text and community structure to predict, with high accuracy, if a community is going to attack another. Such models are of practical use, as it can alert the community moderators to keep an eye out for an incoming attack.

Do you see a logical extrapolation of your work used in "nudges" to prompt users to clean up their act prior to prosecution? Akin to a teacher at the front of the class keeping a wary eye on the troublemakers in the back row before they fall into criminal masterminded gangs?
Absolutely! A natural and exciting follow-up work is how to discourage bad actors to do malicious acts and to encourage everyone to be benign. This will help us to create a healthy, collaborative, and more inclusive online ecosystem for everyone. There are many interesting challenges to achieve this goal, requiring new methods of interventions and better prediction models. Enabling better online conversations and nudging people to be their better self is going to be one of my key thrusts going forward.

Have you have personal experience with online harassment or was this more of an interesting AI problem to solve for you?
One of the major reasons for me to follow this direction of research was seeing some of my friends being harassed by social media trolls. This led to look for non-algorithmic ways to curb this problem. Being a challenging task, it piqued the interest of the scientist inside me and I eventually learned to create data science and machine learning methods to help solve these problems.

Want to be an Entrepreneur Leadership Network contributor? Apply now to join.

Editor's Pick

Side Hustle

At 16, She Started a Side Hustle While 'Stuck at Home.' Now It's on Track to Earn Over $3.1 Million This Year.

Evangelina Petrakis, 21, was in high school when she posted on social media for fun — then realized a business opportunity.

Health & Wellness

I'm a CEO, Founder and Father of 2 — Here Are 3 Practices That Help Me Maintain My Sanity.

This is a combination of active practices that I've put together over a decade of my intense entrepreneurial journey.

Business News

Remote Work Enthusiast Kevin O'Leary Does TV Appearance Wearing Suit Jacket, Tie and Pajama Bottoms

"Shark Tank" star Kevin O'Leary looks all business—until you see the wide view.

Business News

Are Apple Smart Glasses in the Works? Apple Is Eyeing Meta's Ran-Ban Success Story, According to a New Report.

Meta has sold more than 700,000 pairs of smart glasses, with demand even ahead of supply at one point.

Money & Finance

The 'Richest' U.S. City Probably Isn't Where You Think It Is

It's not located in New York or California.

Business News

Hybrid Workers Were Put to the Test Against Fully In-Office Employees — Here's Who Came Out On Top

Productivity barely changed whether employees were in the office or not. However, hybrid workers reported better job satisfaction than in-office workers.