Black Friday Sale! 50% Off All Access

Artificial Intelligence Systems Can be Fooled The experiment shows the severe limitations of 'deep learning' machines

By Nidhi Singh

Opinions expressed by Entrepreneur contributors are their own.

You're reading Entrepreneur Asia Pacific, an international franchise of Entrepreneur Media.

Shutterstock

Despite all its benefits and the ease that technology has brought in, the fear that new-age technologies like artificial intelligence (AI), machine learning and robotics would displace human jobs still looms. However, some researchers don't agree with the idea that technology would take away jobs from humans anytime soon.

Some researchers at University of California, Los Angeles (UCLA) in the US conducted various experiments, which show the severe limitations of "deep learning' machines.

A Long Way To Go For AI

"How smart is the form of AI known as deep learning computer networks, and how closely do these machines mimic the human brain? They have improved greatly in recent years, but still have a long way to go," reports a team of UCLA cognitive psychologists in the journal PLOS Computational Biology.

Supporters have expressed enthusiasm for the use of these networks to do many individual tasks, and even jobs, traditionally performed by people. However, results of the five experiments in this study showed that it's easy to fool the networks, and the networks' method of identifying objects using computer vision differs substantially from human vision.

"The machines have severe limitations that we need to understand," says Philip Kellman, a UCLA professor of psychology and a senior author of the study.

Networks Are Easily Fooled

Machine vision, he says, has drawbacks. In the first experiment, the psychologists showed one of the best deep learning networks, called VGG-19, color images of animals and objects. The images had been altered. For example, the surface of a golf ball was displayed on a teapot; zebra stripes were placed on a camel; and the pattern of a blue and red argyle sock was shown on an elephant. VGG-19 ranked its top choices and chose the correct item as its first choice for only five of 40 objects.

"We can fool these artificial systems pretty easily," says co-author Hongjing Lu, a UCLA professor of psychology. "Their learning mechanisms are much less sophisticated than the human mind."

In the second experiment, the psychologists showed images of glass figurines to VGG-19 and to a second deep learning network, called AlexNet. VGG-19 performed better on all the experiments in which both networks were tested. Both networks were trained to recognize objects using an image database called ImageNet.

However, both networks failed to identify the glass figurines.

In the third experiment, the researchers showed 40 drawings outlined in black, with images in white, to both VGG-19 and AlexNet. These first three experiments were meant to discover whether the devices identified objects by their shape.

The researchers concluded that humans see the entire object, while the AI networks identify fragments of the object.

"This study shows these systems get the right answer in the images they were trained on without considering shape. For humans, overall shape is primary for object recognition, and identifying images by overall shape doesn't seem to be in these deep learning systems at all," Kellman says.

Nidhi Singh

Former Correspondent, Entrepreneur Asia-Pacific

A self confessed Bollywood Lover, Travel junkie and Food Evangelist.I like travelling and I believe it is very important to take ones mind off the daily monotony .

Making a Change

This All-Access Pass to Learning Is Now $20 for Black Friday

Unlock more than 1,000 courses to fit your schedule.

Health & Wellness

How to Improve Your Daily Routine to Strike a Balance Between Rest and Business Success

Here's how entrepreneurs can balance their time and energy to prevent burnout.

Career

Why Entrepreneur Stands Against the PRO Act

The Protecting the Right to Organize Act could do lasting harm to the small-business and franchise community.

Business News

The 'Whale' Who Bet Big on Donald Trump's Second Presidency Actually Won $85 Million, Way More Than First Reported. Here's How He Did It.

The trader made a series of risky bets on the presidential election — all of which came true.

Science & Technology

I've Spent 20 Years Studying Focus. Here's How I Use AI to Multiply My Time and Save 21 Weeks of Work a Year

AI is supposed to save time, but 77% of employees say it often costs more time due to all the editing it requires. Instead of helping, it can become a distraction. But don't worry — there's a better way.

Career

What Lawmakers Don't Understand About the PRO Act, According to Franchise Owners

Lawmakers are confused about what franchising is, and are threatening the whole business model with a bad bill, experts say.